
WRITTEN BY:

Jothy Rosenberg
Founder & CEO

SEPTEMBER 2018

Enforced in Hardware by CoreGuard®
Technology

WHITE PAPER

SAFETY IN OUR
EMBEDDED
SYSTEMS

© 2018 Dover Microsystems, Inc.2

© 2018 Dover Microsystems, Inc. 3

Oct 2012

Security researcher Barnaby Jack creates a well-publicized video demonstrating his ability to gain

access to pacemakers from a number of manufacturers. In the video, Jack uses just a laptop and

is no more than 50 feet away from the devices when he causes them to deliver fatal shocks of 830

volts. Luckily, he uses mannequins for his demonstration and no individuals are hurt.

Dec 2014
A cybercriminal group causes extraordinary collateral damage to a German steel mill by disrupt-

ing control systems to gain access to the plant. Upon doing so, the group accidentally sends a

blast furnace into overdrive, causing it to self-destruct—putting workers lives at risk.

Jul 2015

Fiat Chrysler Automobiles issues a recall of 1.4 million vehicles following a successful hack by

security researchers Charlie Miller and Chris Valasek. Miller and Valasek gained access to a 2014

Jeep Cherokee over the internet and were able to control the car’s radio, A/C, windshield wipers,

steering, brakes, and transmission.

Introduction

Safety protocols for embedded systems mandate that developers follow standards, adhere to design and coding guidelines1,

enforce the checking and re-checking of procedures, and conduct testing extensively. Yet despite these best efforts,

even the most carefully-engineered systems are vulnerable to the unanticipated events of Mother Nature, mechanical

or electrical failures, human errors, and malicious cyberattacks. Life happens, and in our cyber-physical IoT world, these

inevitable system failures or malfunctions aren’t just frustrating—they can be catastrophic, as well.

Consider just a few examples:

1 The Power of Ten - Rules for Developing Safety Critical Code, Gerard J. Holzmann, NASA/JPL Laboratory for Reliable Software.

safety | ‘sāftē |

noun (plural safeties)

1 the condition of being protected from or unlikely to cause danger, risk, or injury

© 2018 Dover Microsystems, Inc.4

The increasing complexity of our embedded systems make safety breaches even more likely because of one simple fact:

There are an average of 15 bugs per 1,000 lines of source code. More complicated systems mean more code, and more

code equals more bugs. Additionally, many of these systems are connected to the internet (and to each other) often

making them more accessible and therefore more vulnerable to attack.

Until recently, the only way to secure these embedded devices was through the aforementioned best practices: adhere to

standards and guidelines, abide by the latest policies, and test, test, test.

But now there’s a new way to look at and approach cybersecurity for embedded devices with CoreGuard™ .

Dover Microsystems’ CoreGuard solution is a unique, patent-pending technology that protects a device by checking each

and every instruction handled by the host processor, and blocking any instruction that violates a safety (or security or

privacy) policy.

A Quick Review of CoreGuard

CoreGuard technology takes a hybrid approach to safety, with silicon IP that enforces software-defined policies. It has two

main components:

	■ Micropolicies: CoreGuard micropolicies define the instruction-by-instruction guarantees for a particular system.

Micropolicies can enforce a wide range of customer-defined security requirements, such as protecting memory

against buffer overflows, preventing control flow hijacking (like Return-Oriented Programming attacks), and managing

information integrity and information confidentiality. Micropolicies can also ensure safety rules unique to a device and

the applications it runs.

Every micropolicy consists of two parts: metadata maintained about each word in the host processor’s accessible

memory, and rules that determine whether or not each instruction is allowed by the set of installed micropolicies.

Micropolicy rules are defined in a proprietary domain-specific language (the Dover Policy Language) that is designed

to support analysis and verification. Because the Dover Policy Language is optimized for writing micropolicies, it

allows for the most efficient code possible; most micropolicies are just a dozen or fewer lines of code.

	■ Policy Enforcer: The policy enforcer is CoreGuard’s hardware mechanism for controlling the host processor. It allows

CoreGuard to check every instruction for compliance with micropolicies. When an instruction violates any micropolicy,

the policy enforcer blocks it from executing. The policy enforcer also maintains a strict separation between the

code and data used by the micropolicies and the application software and operating system being protected; only

CoreGuard hardware can run CoreGuard software. CoreGuard hardware logic is added to an existing SoC (System

on a Chip) design by integrating it with the processor or microcontroller that is running all applications for that SoC.

© 2018 Dover Microsystems, Inc. 5

Legal Transitions for Finite
State Machines

CoreGuard’s policy language can express the allowed

(safe) states of a protected system by defining a finite

state machine (FSM). An FSM describes the legal (safe)

configurations of a system and the allowed transitions from

one safe state to the next.

CoreGuard can apply this State Machine approach to a

majority of safety policy enforcement cases.

Some cases are best handled with another powerful

CoreGuard policy approach called Information Flow

Integrity—or with a combination of both approaches.

Let’s consider a simple safety assertion:

Traffic Light Controller: A traffic light must never have

adjacent directions showing the green signal simultaneously

(fast-moving cars might crash).

Next, we’ll take a closer look at this case to show you how

CoreGuard implements and enforces a Traffic Light Safety

micropolicy.

What is a finite state machine?

A finite state machine, or more simply just state

machine, is a mathematical model of computation. It

is an abstract machine that can be in exactly one of

a finite number of states at any given time. The state

machine can change from one state to another in

response to some external inputs; this change from

one state to another is called a transition. A state

machine is defined by a list of its states, its initial

state, and the conditions for each transition. Real-

world examples of state machines are abundant:

vending machines, elevators, combination locks,

and traffic lights to name just a few. In this paper we

will use a traffic light controller as the example state

machine whose safety properties we want to enforce

in CoreGuard’s hardware.

A CB

© 2018 Dover Microsystems, Inc. 5

© 2018 Dover Microsystems, Inc.6

© 2018 Dover Microsystems, Inc. 7

Traffic Light Safety Policy

Our simple traffic light controller controls 12 lights: three

each facing east and west, and three each facing north and

south. Each of the four directions has a red, yellow, and

green light. The lights facing east and west are wired to

show identical colored lights, as are the pairs of lights facing

north and south. Figure 1 shows a finite-state machine

diagram for the traffic light controller. A state is a pair of

north-south and east-west colors. Each state is highlighted

in a gray box, and the arrows show the allowed transitions

from one state to another. There are five unique states with

our traffic light controller (the all-red color state is shown

twice in the diagram).

The metadata for our Traffic Light
Safety Policy

As described earlier, CoreGuard uses metadata to

determine whether an instruction complies with the set of

micropolicies installed on the SoC. The Traffic Light Safety

Micropolicy metadata labels two things:

1.	 Current state of the system. How metadata should

label current state will depend on the application. With

our traffic light application, a metadata value represents

each combination of direction and color—for example,

“NS_Red,” “EW_Green,” and so forth. There are five

unique states:

	■ NS_Green, EW_Red

	■ NS_Yellow, EW_Red

	■ NS_Red, EW_Red

	■ NS_Red, EW_Green	

	■ NS_Red, EW_Yellow

FIGURE 1: TRAFFIC LIGHT STATE DIAGRAM

7

© 2018 Dover Microsystems, Inc. 8

2.	 The first instruction of each transition routine. Within the traffic light application, transition routines are critical

because they include the instructions that change the machine from one state to another. CoreGuard uses this type of

metadata to label the first instruction in each of the four transition routines:

	■ GoGreenEW

	■ GoGreenNS

	■ GoRed

	■ GoYellow

When the traffic light controller application calls a transition routine, and the host processor attempts to process

the first instruction in that routine, the metadata on that instruction activates the CoreGuard policy mechanism and

evaluates the rules in the Traffic Light Safety Micropolicy (explained later).

FIGURE 2: TRAFFIC LIGHT SAFETY MICROPOLICY METADATA

metadata:
 // Metadata to represent the light
colors
	 NS_Red
	 NS_Yellow
	 NS_Green
	 EW_Red
	 EW_Yellow
	 EW_Green

These metadata values represent each direction-
color combination.

A state is a pair of these direction-color
combinations. For example: NS_Green & EW_Red

 // Metadata to label the application
transitions
 GoGreenEW
 GoGreenNS
 GoRed
 GoYellow

These metadata values are used to label the first
instruction of each transaction routine in the
application.

© 2018 Dover Microsystems, Inc.8

© 2018 Dover Microsystems, Inc. 9

The traffic light application code

The CoreGuard SDK (Software Development Kit) includes a Policy Linker tool that associates metadata tags with the

transition routines in the application code. The values for these metadata tags can then be used to construct a traffic light

safety micropolicy that is triggered when the application goes to execute those transition routines.

First, let’s look at the application code.

Figure 3 shows a snippet of the C-code for the traffic light application. Note how the routine names in the traffic light code

correspond to the metadata labels for transitions.

FIGURE 3: C-CODE FOR TRAFFIC LIGHT APPLICATION

© 2018 Dover Microsystems, Inc. 10

The micropolicy that enforces safety for the traffic light

Now let’s look at the micropolicy code to see how it relates to the application’s C-code.

Figure 4 shows the rules for the traffic light safety micropolicy, written in the Dover Policy Language. Rules 1 - 5 describe

the legal transitions for each state by first evaluating a precondition and then defining how metadata should be updated

when the precondition is true (that is, when the rule has a “match”). These preconditions are true only for the first

instruction in a transition routine (for example, the instruction with a metadata value of GoGreenNS). Rule 6 allows all

subsequent instructions in the transition routine to execute because its precondition is met with instructions that are NOT

tagged with GoGreenNS, GoGreenEW, GoYellow, or GoRed metadata. CoreGuard evaluates the policy rules sequentially

until it finds a match.

If none of the rules match, then it is a policy violation; CoreGuard blocks the instruction from executing and issues an

exception. The application will be programmed to handle this exception safely. For example, it may activate a safety mode

that puts all lights in a blinking red state.

Figure 5 breaks down Rule 1 for a closer look at how CoreGuard evaluates a rule.

lightPol =

 (code == [+GoGreenNS], env == [NS_Red, EW_Red] -> env = {NS_Green, EW_Red})

 (code == [+GoGreenEW], env == [NS_Red, EW_Red] -> env = {NS_Red, EW_Green})	

 (code == [+GoYellow] , env == [NS_Green, EW_Red] -> env = {NS_Yellow, EW_Red})	

 (code == [+GoYellow] , env == [NS_Red, EW_Green] -> env = {NS_Red, EW_Yellow})	

 (code == [+GoRed] , env == _ -> env = {NS_Red, EW_Red})	

 (code == [-GoGreenNS, -GoGreenEW, -GoYellow, -GoRed], env == _ -> env = env)

Rule 1

Rule 2

Rule 3

Rule 4

Rule 5

Rule 6

Transition Current State New State

FIGURE 4: TRAFFIC LIGHT SAFETY MICROPOLICY RULES

FIGURE 5: BREAKDOWN OF A MICROPOLICY RULE

 (code == [+GoGreenNS], env == [NS_Red, EW_Red] -> env = {NS_Green, EW_Red})

Checks if metadata for the
current instruction contains

GoGreenNS

Checks if metadata for the
current state of the system
contains NS_Red, EW_Red

Updates metadata for the state
to NS_Green, EW_Red if the

precondition is met

Defines a precondition for the current state
during a specified transition

Describes how metadata is updated when
the precondition is met

10 © 2018 Dover Microsystems, Inc.

© 2018 Dover Microsystems, Inc. 11

The First and Only Flexible Hardware-Based Safety Enforcement

Safety policy enforcement in hardware is part of CoreGuard’s IoT Trust Triad: Security, Safety, and Privacy. To enforce

safety, CoreGuard uses the same hardware, policy language, and policy tools that it uses to enforce security and privacy.

This consistency of approach enables embedded systems developers to implement true defense in depth with a set of

micropolicies that meets the unique safety, security, and privacy requirements of their SoC.

Using standards and adhering to policies, following coding guidelines and implementing extensive testing—these are all

important practices when it comes to the safety of our cyber-physical embedded systems. These measures alone, however,

are not enough to guarantee that a system malfunction or failure (whether intentional or unintentional) does not result in

serious, or even deadly, consequences.

Whether it’s a pacemaker, a piece of industrial equipment, or a major city’s traffic infrastructure, CoreGuard’s powerful,

flexible, and unassailable hardware safety policy enforcement can stop it.

© 2018 Dover Microsystems, Inc. 11

About Dover Microsystems

Dover’s lineage began in 2010 as the largest performer on the DARPA

CRASH program. In 2015, Dover began incubation inside Draper before

spinning out in 2017.

Based in Boston, Dover is the first company to bring real security, safety,

and privacy enforcement to silicon. Dover’s patented CoreGuard solution

integrates with RISC processors to protect against cyberattacks, flawed

software, and safety violations.

www.dovermicrosystems.com

Learn More: info@dovermicrosystems.com

http://www.dovermicrosystems.com
mailto:info%40dovermicrosystems.com?subject=I%27m%20interested%20in%20learning%20more%20about%20CoreGuard

